Temporal Databases Annotated Bibliography


I’ve been reading about temporal databases for a few years now, so I think it’s time I share my bibliography and notes. This is presented in “narrative order”, so that you can get a sense of how the research has developed. This article somewhat overlaps a mini literature review I wrote on the Postgres hackers mailing list, but this article is more complete and in a place where I can keep it updated.

Temporal databases let you track the history of things over time: both the history of changes to the database (e.g. for auditing) and the history of the thing itself. They are not the same thing as time-series databases: whereas a time-series database has time-stamped events, a temporal database stores the history of things, typically by adding a start/end time to each row (so two timestamps, not one). With time-series the challenge is typically scale; with temporal the challenge is with complexity and correctness.


Snodgrass, Richard T. Developing Time-Oriented Database Applications in SQL. 1999. The seminal work on temporal databases and still the most useful introduction I know. Covers the “combinatorial explosion” of non-temporal/state-temporal/system-temporal/bi-temporal tables, current/sequenced/non-sequenced queries, SELECT/INSERT/UPDATE/DELETE, different RDBMS vendors, etc. Very similar to the proposed TSQL2 standard that was ultimately not accepted but still influenced Teradata’s temporal support. Available as a free PDF from his website.

Hugh Darwen and C. J. Date. “An Overview and Analysis of Proposals Based on the TSQL2 Approach.” Latest draft 2005, but originally written earlier. Criticizes the TSQL2 proposal’s use of “statement modifiers”, especially their problems with composability when a view/subquery/CTE/function returns a temporal result. Available as a PDF.

Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. 3rd edition, 2013. (2nd edition 2002, 1st 1996.) (My notes are based on reading the 2nd edition, but I don’t think there are major relevant changes.) This book is not about temporal databases per se, but in Chapter 4 (and scattered around elsewhere) he talks about dealing with data that changes over time (“Slowly Changing Dimensions”). His first suggestion (Type 1) is to ignore the problem and overwrite old data with new. His Type 2 approach (make a new row) is better but loses the continuity between the old row and the new. Type 3 fixes that but supports only one change, not several. This writing is evidence for the need to handle temporal data, and the contortions that result from not having a systematic approach. (pdf)

C. J. Date, Hugh Darwen, Nikos Lorentzos. Time and Relational Theory, Second Edition: Temporal Databases in the Relational Model and SQL. 2nd edition, 2014. (First edition published in 2002.) I haven’t read this one yet but I would love to see what Date’s ideal system looks like. If you’ve read his other works you know that he is quite rigorous, often critical of SQL’s compromises vs the pure relational model (e.g. NULL and non-distinct results), and not always very practical. I think his idea might look something like sixth-normal form, which would be great for temporal DDL but sounds burdensome to use.

SQL:2011 Draft standard. (pdf) Personally I find the standard pretty disappointing. It uses separate start/end columns instead of built-in range types, although range types offer benefits like exclusion constraints and convenient operators for things like “overlaps” that are verbose to code correctly by hand. It only mentions inner joins, not the various outer joins, semi-joins (EXISTS), anti-joins (NOT EXISTS), or aggregates. Many of its features apply only to system-time, not application-time, even though applicaion-time is the more interesting and less-available feature. (There are lots of auditing add-ons, but almost nothing for tracking the history of things.) The syntax seems too specific, lacking appropriate generality. A lot of these drawbacks seem motivated by a goal that goes back to TSQL2: to let people add temporal support to old tables without breaking any existing queries. That has always seemed to me like an unlikely possibility, and an unfortunate source of distortions. I don’t expect something for free, and I don’t mind doing work to migrate a table to a temporal format, as long as the result is good. Instead we get an (ostensible) one-time benefit for a prolonged compromise in functionality and ease-of-use.

Krishna Kulkarni and Jan-Eike Michels. “Temporal Features in SQL:2011”. SIGMOD Record, September 2012. Nice overview of the temporal features included in the SQL:2011 standard. Here is a PDF of the paper. See also these slides by Kulkani.

Peter Vanroose. “Temporal Data & Time Travel in PostgreSQL,” FOSDEM 2015. (Slides as a pdf) Lots of good detail here about SQL:2011. I’d love to see a recording of this talk if it’s available, but I haven’t found it yet.

Tom Johnston and Randall Weis. Managing Time in Relational Databases: How to Design, Update and Query Temporal Data. 2010. I haven’t read this one yet, although see just below for Johnston’s other book. This one sounds more practical and less original, although I don’t know for sure.

Tom Johnston. Bitemporal Data: Theory and Practice. 2014. I felt like I found a kindred soul when I read how he connects database design and ontology, as I’ve always thought of programming as “applied philosophy.” Databases as Aristotelian propositional logic is inseparable from the mathematical set-based theory. Johnston gives helpful distinctions between the physical rows in the table, the assertions they represent, and the things themselves. Eventually this leads to a grand vision of connecting every assertion’s bitemporal (or tritemporal) history to its speaker, somewhat like some ideas in the Semantic Web, although this doesn’t sound very practical. Like Date he seems to be landing on something like sixth-normal form, with a view-like presentation layer to bring all the attributes back together again. He points out how unsatisfactory Kimball’s suggestions are. He also criticizes the limitations of SQL:2011 and offers some amendments to make it more useful. Describes a (patented) idea of “episodes” to optimize certain temporal queries.

Anton Dignös, Michael H. Böhlen, and Johann Gamper. “Temporal Alignment”, SIGMOD ’12. Amazing! Shows how to define temporal versions of every relational operator by a combination of the traditional operators and just two simple transforms, which they call “align” and “split”. Gives a very readable exposition of the new theory and then describes how they patched Postgres 9.0 and benchmarked the performance. I think this solves the composability problems Date objected to in TSQL2, and unlike SQL:2011 it is general and comprehensive. The focus is on state-time, and I’m not sure how it will map onto bi-temporal, but even just having good state-time functionality would be tremendous. And the paper is only 12 easy-to-read pages! (pdf)

Anton Dignös, Michael Hanspeter Böhlen, Johann Gamper, and Christian S. Jensen. “Extending the kernal of a relational dmbs with comprehensive support for sequenced temporal queries,” ACM Transactions on Database Systems, 41(4):1-46. Continues the previous paper but adds support for scaling the inputs to aggregate groups according to how much of their time period goes into each group. Gives more benchmarks against a patched Postgres 9.5. (pdf) These researchers are now trying to contribute their work to the Postgres core project, of which I am very much in favor. :-)


Finally here are some tools for temporal support in Postgres. The sad theme is that pretty much everything gives audit support but not history support:


The pgaudit extension looks pretty useful but I haven’t tried it yet. According to the AWS docs you can even use this on RDS.

Vlad Arkhipov’s temporal tables extension only supports system-time (auditing). Also on Github and a nice writeup by Clark Dave.

Magnus Hagander presented an approach to capturing system-time history in a separate schema at PGConf US 2015 and PGDay’15 Russia. Here are slides and video. Quite elegant if you want to ask questions like “what did we think as of time t?” If I recall correctly this is similar to one of the ideas proposed at the end Snodgrass, although I haven’t compared them carefully. Hagander points out that DDL changes against temporal databases are challenging and hopefully infrequent. This is a topic that is almost completely absent from the literature, except for a brief mention in Johnston 2014.


Chronomodel extends the ActiveRecord ORM to record system-time history. The pg_audit_log gem works fine but like many audit solutions is rather write-only. I wouldn’t want to build any functionality that has to query its tables to reconstruct history. You could also try paper_trail or audited (formerly acts_as_audited). Of these projects only Chronomodel seems to be aware of temporal database research.

Further Research

Temporal databases are exciting because there is still so much to do. For example:

  • What should the UI look like? Even one dimension adds a lot of complexity, let alone bi-temporal. How do you present this to users? As usual an audit history is easier, and it’s possible to find existing examples, whereas a state-time history is more challenging but probably more valuable. How should we let people view and edit the history of something? How does it work if there is a “Save” button vs save-as-you-type?

  • What does “full stack” temporal support look like? Do we extend REST? What would be a nice ORM interface? Should we use triggers to hide the temporal behavior behind regular-looking SQL? Or maybe extend SQL so you can more explicitly say what you want to do?

  • SELECT support for “as of” semantics or “over time” semantics.

  • Temporal foreign keys. I’m working on this one.

  • DDL changes. For example if you want to add a NOT NULL column, what do you do with the old data? Could there be built-in support to apply constraints only to a given time span?

blog comments powered by Disqus Prev: Counting Topologically Distinct Directed Acyclic Graphs with Marshmallows Next: Postgres isn't running the archive_command on my standby